

Государственное образовательное учреждение высшего профессионального образования «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

СПРАВОЧНЫЕ МАТЕРИАЛЫ ПО ФИЗИКЕ

ПЕРИОДИЧЕСКАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ Д.И. МЕНДЕЛЕЕВА

	I		II		II	I	IV		V		V	Ι	VII					VII	I			
	Н	1																			He	2
1	1,0079																				4,0026	j
	Водород	Į																			Гелий	[
	Li	3	Be	4	В	5	C	6	N	7	O	8	F	9							Ne	10
2	6,941		9,012		10,811		12,011		14,006	7	15,999)	18,998								20,179	1
	Литий		Берил.		Бор		Углерод		Азот		Кисло		Фтор								Неон	
	Na	11	Mg	12	Al	13	Si	14	P	15	S	16	Cl	17								18
3	22,990		24,305		26,982		28,086		30,974		32,066)	35,453								39,948	
	Натрий		Магни		Алюм		Кремни		Фосфо		Cepa		Хлор								Аргон	ĺ
L	K	19	Ca	20	21	Sc	22	Ti	23	V	24	Cr	25	Mn	26	Fe	27	Со	28	Ni		ĺ
4	39,098		40,078			14,956		47,88		,942		51,996		1,938	_	55,847		58,933		58,69		
	Калий		Кальц			ндий		Гитан	Вана			Хром	Марг		7	Железо	К	обальт	_	Никель		
	29	Cu	30	Zn	Ga	31	Ge	32	As	33	Se	34	Br	35								36
		3,546		65,39	69,723		72,59	.,	74,922		78,96		79,904								83,80	
		Медь		<u> Цинк</u>	Галли		Герман		Мышь		Селен		Бром	-					4.5		Крипт	ГОН
5	Rb	37	Sr	38	39	Y	40	Zr	41	Nb	42	Mo	43	Tc	44	Ru	45	Rh	46	Pd		
	85,468	_	87,62	u	8		, TT			,906	N/I	95,94	Т	[99]	n	101,07		102,905	п.	106,42		
	Рубиди		Строн			гтрий 49	Sn	коний 50	Нис	<u>ооии</u> 51		ибден 52	Техн	<u>еции</u> 53	P	утений		Родий	111a	лладий	V.	<i>51</i>
	47	Ag 7,868	48	Cd 12,41	In 114,82		5n 118,71	50	Sb 121,75	31	Te 127,60		126,904								Xe 131,29	54
		7,000 ребро		12,41 ЦМИЙ	114,02 Индий		116,71 Олово		Сурьм	0	Теллу		120,902 Йод	•							Ксено	
	Cs	јеоро 55	Ba	<u>цмии</u> 56	57	La*	72	Hf	73	a Ta	74	W	75	Re	76	Os	77	Ir	78	Pt	КСЕНО	н
6	132,91	33	137,33			38,905		178,49	_	,948		183,85		5,207	/0	190,20	' '	192,22	70	195,08		
	Цезий		Барий			антан		фний		,540 Італ		фрам		э,20 <i>7</i> ений		Осмий	I	т <i>у2,22</i> Тридий	П	латина пред		
	79	Au	80	Hg		81	Pb	82	Bi	83	Po	84	At	85		O C.MIIII	-	тридии			Rn	86
		6,967		00,59	204,38		207,20	-	208,98	00	[209]	0.	[210]	00							[222]	oo
		лото		туть	Талли		Свинец		Висму	Г	Полон	ий	Астат								Г Радон	
	Fr	87	Ra	88	89	Ac**	104	Rf	105	Db	106	Sg		Bh	108	Hs	109	Mt	110	Uun	, ,	
7	[223]		226,025	5		[227]		[261]		262]		[263]		[262]		[265]		[266]		[272]		
	Франци	<u>ій</u>	Радий		Акт	иний	Резерф	ордий		ний	Сибо	ргий	Б	рий	3	Хассий	Мей	тнерий	Уну	ннилий		

*Лантано	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
-иды	140,12	140,908	144,24	[147]	150,36	151,96	157,25	158,925	162,50	164,93	167,26	168,934	173,04	174,967
	Церий	Празеодим	Неодим	Прометий	Самарий	Европий	Гадолиний	Тербий	Диспрозий	Гольмий	Эрбий	Тулий	Итербий	Лютеций
**Актино	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr
-иды	232,04	231,036	238,029	237,048	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	[260]
	Торий	Протактиний	Уран	Нептуний	Плутоний	Америций	Кюрий	Берклий	Калифорний	Эйнштейний	Фермий	Менделеевий	Нобелий	Лоуренсий

Государственное образовательное учреждение высшего профессионального образования «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

СПРАВОЧНЫЕ МАТЕРИАЛЫ ПО ФИЗИКЕ

Рассмотрено на заседании кафедры физики Протокол № 4 от 22.03.2016 Утверждено учебно-издательским советом ДонНТУ Протокол № 3 от 17.05.2016 УДК 53(071)

Справочные материалы по физике / Сост.: Волков А.Ф., Лумпиева Т.П. – Донецк: ДонНТУ. – 2016. – 28 с.

Предлагаемые «Справочные материалы» охватывают все разделы курса физики, предусмотренные программой.

Материалы разбиты на разделы. В первом разделе приведены некоторые сведения по математике. Во втором разделе даны значения основных физических постоянных и сведения о единицах физических величин. Значения постоянных округлены до значений, достаточных для расчётов при решении задач и лабораторных расчётов.

Содержание третьего раздела составляют таблицы физических величин и графики. Приведенные таблицы и графики не претендуют на полноту охвата всех справочных сведений по тому или иному разделу курса физики. Из многочисленных сведений отобраны те, которые используются при решении типовых задач, а также те, которые необходимы при выполнении лабораторных работ физического практикума.

Составители: А.Ф. Волков, проф.

Т.П. Лумпиева, доц.

СОДЕРЖАНИЕ

ПРЕДИСЛОВИЕ	4
ПОЯСНЕНИЯ К ТАБЛИЦАМ	4
1. НЕКОТОРЫЕ СВЕДЕНИЯ ПО МАТЕМАТИКЕ	6
2. ОСНОВНЫЕ ФИЗИЧЕСКИЕ ПОСТОЯННЫЕ. ЕДИНИЦЫ ФИЗИЧЕСКИХ ВЕЛИЧИН	9
2.1. Основные физические постоянные	9
2.2. Греческий и латинский алфавиты	10
2.3. Множители и приставки для образования десятичных, кратных и дольных единиц и их наименований	11
2.4. Некоторые сведения о единицах физических величин	12
3. ТАБЛИЦЫ ФИЗИЧЕСКИХ ВЕЛИЧИН	14
3.1. Астрономические величины	14
3.2. Плотность и модуль упругости твердых тел	14
3.3. Тепловые свойства твердых тел	15
3.4. Свойства жидкостей при 20°С	15
3.5. Свойства газов при 20°С	15
3.6. Скорость звука при 20°С	16
3.7. Состав сухого атмосферного воздуха	16
3.8. Критические параметры и поправки Ван-дер-Ваальса	16
3.9. Элементы периодической системы	17
3.10. Электрические свойства веществ	18
3.11. Удельное электрическое сопротивление ρ_0 и температурный коэффициент	1.0
сопротивления α некоторых проводников при 0° С	18
и напряженностью H намагничивающего поля	19
3.13. Показатели преломления	19
3.14. Интервалы длин волн и частот и соответствующие им цвета видимой части спектра	20
3.15. Шкала электромагнитных волн	20
3.16. Длины волн ярких линий в спектре ртутной лампы ПРК-4	21
3.17. Длины волн некоторых ярких линий в спектре неона	21
3.18. Спектральные линии атома водорода в видимой части спектра	22
3.19. Основные физические свойства некоторых полупровод-	
никовых материалов	22
слоем адсорбата	2324
2.22. Зависимость удельной энергия связи от массового числа	۷4
фотонов для некоторых материалов	24
3.23. Основные свойства некоторых изотопов	25

ПРЕДИСЛОВИЕ

Решение многих физических и технических задач невозможно без использования справочных данных, поэтому умение работать со справочником является обязательным умением для специалиста любого направления подготовки. Прежде чем воспользоваться справочными данными, прочитайте пояснения к таблицам. Выполнив лабораторную работу, не забудьте оценить достоверность экспериментально полученного результата, сравнив его с табличными данными.

ПОЯСНЕНИЯ К ТАБЛИЦАМ

Как выбирать приставки?

Перечисленные в таблице множители и приставки используются для образования кратных и дольных единиц от единиц Международной системы (СИ) и от внесистемных единиц, допущенных к применению.

Приставки гекто..., дека..., деци... и санти... допускается применять только в наименованиях кратных и дольных единиц, уже получивших широкое распространение (гектар, декалитр, дециметр, сантиметр и др.).

Приставки рекомендуется выбирать таким образом, чтобы числовые значения величин находились в пределах от 0,1 до 1000. Например, для выражения числа $7.5 \cdot 10^{-5}$ м следует выбрать приставку микро..., а не мили... или нано... С приставкой микро получим $7.5 \cdot 10^{-5} = 75 \cdot 10^{-6} = 75$ мкм, т.е. число, находящееся в пределах от 0,1 до 1000.

С приставкой милли получим $7.5 \cdot 10^{-5} = 0.075$ мм, т.е., число меньшее 0.1. С приставкой нано $-7.5 \cdot 10^{-5} = 75000$ нм, т.е. число, большее 1000.

Наименования и обозначения десятичных кратных и дольных единиц образуются присоединением приставок к наименованиям исходных единиц. Присоединение двух (и более) приставок подряд не допускается. Например, вместо единицы «микромикрофарад» следует применять единицу «пикофарад».

Обозначение приставки пишется слитно с обозначением единицы, к которой она присоединяется.

При сложном наименовании производной единицы СИ приставку присоединяют к наименованию первой единицы, входящей в произведение или числитель дроби. Например, кПа·с, но не Па·кс.

В виде исключения из этого правила в случаях, когда это нашло широкое применение, допускается присоединение приставки к наименованию единицы, входящей в знаменатель дроби. Например: кВ/см, А/мм².

Кроме десятичных кратных и дольных единиц допущены к использованию кратные и дольные единицы времени, плоского угла и относительных величин, не являющихся десятичными. Например, единицы времени (минута, час, сутки); единицы плоского угла (градус, минута, секунда).

О единицах измерения параметров

Единицы измерения параметров указаны в заголовках столбцов. Многие из них указаны с приставками. При расчёте не забудьте вместо приставки записать соответствующий множитель (см. табл 1.3.).

О множителях в заголовках столбцов

В заголовке некоторых столбцов таблиц стоит множитель вида 10^n . где n — целое положительное или отрицательное число. Наличие такого множителя указывает, на то, что помещённые в столбце числа следует умножить на этот множитель. Например, в таблице «Температурные коэффициенты электрического сопротивления проводников» в заголовке стоит множитель 10^{-3} . Следовательно, температурный коэффициент электрического сопротивления, например, алюминия равен $4,6\cdot10^{-3}$ град $^{-1}$.

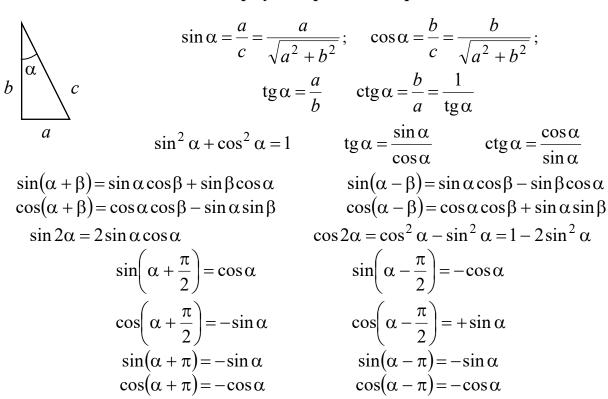
При каких условиях определялись параметры?

Параметры многих веществ зависят от температуры или давления. Как правило, в заголовке таблиц указываются значения температуры (или давления), при которых определялись значения параметров. Если в заголовке таблицы они не указаны, то это означает, что параметры определялись при лабораторных условиях, т.е. при нормальном атмосферном давлении и комнатной температуре (p_0 = 10^5 Па, T=300 K).

Немного истории

Первые приставки были введены в 1773–1795 годах при узаконении во Франции метрической системы мер. Было принято для кратных единиц наименования приставок брать из греческого языка, для дольных – из латинского. В те годы были приняты следующие приставки: кило... (от греч. chilioi – тысяча), гекто... (от греч. hekaton – сто), дека... (от греч. deka – десять), деци... (от лат. decem – десять), санти... (от лат. centum – сто), милли... (от лат. mille – тысяча).

В последующие годы число кратных и дольных единиц увеличилось. Наименования приставок заимствовались иногда и из других языков.


Появились следующие приставки: мега... (от греч. megas – большой), гига... (от греч. gigas, gigantos – великан), тера... (от греч. teras, teratos – огромный, чудовище), микро... (от греч. mikros – малый, маленький), нано... (от греч. nanos – карлик), пико... (от итал. piccolo – небольшой, мелкий), фемто... (от датск. femten – пятнадцать), атто... (от датск. atten – восемнадцать). Последние приставки – пета... и экса... – были приняты в 1975 году: пета (от греч. peta – пять, что соответствует пяти разрядам по 10^3), экса... (от греч. hex – шесть, что соответствует шести разрядам по 10^3).

1. Некоторые сведения по математике

1.1. Свойства степеней

$a^0 = 1$	$\left(a^n\right)^m = a^{n \cdot m}$	$a^{\frac{1}{n}} = \sqrt[n]{a}$	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$
$a^n \cdot b^m = a^{n+m}$	$(ab)^n = a^n \cdot b^n$	$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$	$\left(\sqrt[n]{a}\right)^m = \sqrt[n]{a^m}$
$\frac{a^n}{a^m} = a^{n-m}$	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$	$\frac{1}{a^n} = a^{-n}$	$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$

1.2. Формулы тригонометрии

1.3. Значения тригонометрических функций для некоторых углов

Радианы	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
Градусы	0°	30°	45°	60°	90°	180°	270°	360°
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	- 1	0
cosα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	- 1	0	1
tgα	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	8	0	œ	0
$ctg\alpha$	œ	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	×	0	∞

1.4. Свойства логарифмов

Если
$$\log_a x = b$$
, то $x = a^b$.

Если a = e = 2,71828... — основание натуральных логарифмов $\log_e x = \ln x = b$, то $x = e^b$.

$$\ln 1 = 0$$
; $\ln (ab) = \ln a + \ln b$; $\ln \left(\frac{a}{b}\right) = \ln a - \ln b$.

1.5. Многочлены

$$a^{2} - b^{2} = (a+b)(a-b).$$

$$(a+b)^{2} = a^{2} + 2ab + b^{2}.$$

$$(a-b)^{2} = a^{2} - 2ab + b^{2}.$$

1.6. Решение алгебраических уравнений

Уравнение	ax + b = 0	$ax^2 + bx + c = 0$	$x^2 + px + q = 0$
Решение	$x = \frac{-b}{a}$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$x = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$

1.7. Площади некоторых фигур

Прямо- угольный	Трапеция	Круг	Сферическая поверхность	Боковая поверхность
треугольник				цилиндра
$S = \frac{1}{2}ab$	$S = \frac{a+b}{2}h$	$S = \pi R^2 = \frac{\pi d^2}{4}$	$S = 4\pi R^2 = \pi d^2$	$S_{60K} = 2\pi Rh$

где a, b – катеты треугольника, основания трапеции; R – радиус; d – диаметр; h – высота трапеции, высота цилиндра.

1.8. Объёмы некоторых фигур

Куб	Параллелепипед	Цилиндр	Шар, сфера
$V = a^3$	V = abc	$V = \pi R^2 L = \frac{\pi d^2 h}{4}$	$V = \frac{4}{3}\pi R^3 = \frac{\pi d^3}{6}$

где a, b, c – стороны параллелепипеда (куба); R – радиус; d – диаметр; h – высота цилиндра.

1.9. Длина окружности

$$L=2\pi R=\pi d$$
,

где R – радиус окружности, d – диаметр окружности

1.10. Формулы для приближённых вычислений

Если a << 1, то в первом приближении можно принять:

$$\frac{1}{1 \pm a} = 1 \mp a; \qquad e^{a} = 1 + a; \qquad \sqrt{1 \pm a} = 1 \pm \frac{1}{2}a; (1 \pm a)^{2} = 1 \pm 2a; \qquad \ln(1 + a) = a; \qquad \frac{1}{\sqrt{1 + a}} = 1 \mp \frac{1}{2}a.$$

Если угол α мал (α <5° или α <0,1 рад) и выражен в радианах, то в первом приближении можно принять:

$$\sin \alpha = \operatorname{tg} \alpha = \alpha$$
; $\cos \alpha = 1$.

1.11. Некоторые формулы дифференциального исчисления

$$\frac{d(uv)}{dx} = v\frac{du}{dx} + u\frac{dv}{dx}; \qquad \frac{d\left(\frac{u}{v}\right)}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2};$$

$$\frac{d(x^m)}{dx} = mx^{m-1}; \qquad \frac{d(e^x)}{dx} = e^x; \qquad \frac{d(\ln x)}{dx} = \frac{1}{x};$$

$$\frac{d(\sin x)}{dx} = \cos x; \qquad \frac{d(\cos x)}{dx} = -\sin x; \qquad \frac{d(\operatorname{tg} x)}{dx} = \frac{1}{\cos^2 x}.$$

1.12. Некоторые формулы интегрального исчисления

Неопределённый интеграл	Определённый интеграл
$\int x^m dx = \frac{1}{m+1} \cdot x^{m+1} + \text{const}$	$\int_{a}^{b} x^{m} dx = \frac{1}{m+1} \Big(b^{m+1} - a^{m+1} \Big)$
$\int \frac{1}{x^2} \cdot dx = -\frac{1}{x} + \text{const}$	$\int_{a}^{b} \frac{1}{x^{2}} \cdot dx = -\left(\frac{1}{b} - \frac{1}{a}\right) = \frac{1}{a} - \frac{1}{b}$
$\int \frac{dx}{x} = \ln x + \text{const}$	$\int_{a}^{b} \frac{dx}{x} = \ln b - \ln a = \ln \frac{b}{a}$
$\int \sin x dx = -\cos x + \text{const}$	$\int_{a}^{a} \sin x dx = -(\cos a - \cos b) = \cos b - \cos a$
$\int \cos x dx = \sin x + \text{const}$	$\int_{a}^{b} \cos x dx = \sin b - \sin a$
$\int e^x dx = e^x + \text{const}$	$\int_{a}^{b} e^{x} dx = e^{b} - e^{a}$

2. Основные физические постоянные. Единицы физических величин

2.1. Основные физические постоянные

Величина	Обозначение	Значения
Гравитационная постоянная	G, γ	$6.67 \cdot 10^{-11} \mathrm{H \cdot m^2/kr^2}$
Ускорение свободного падения	g	$9,81 \text{ m/c}^2$
Скорость света в вакууме	С	3·10 ⁸ м/с
Молярная газовая постоянная	R	8,31 Дж/(моль-К)
Постоянная Больцмана	k	1,38⋅10 ⁻²³ Дж/К
Число Авогадро	$N_{ m A}$	$6,02 \cdot 10^{23} \text{ моль}^{-1}$
Молярная масса воздуха	M	29·10 ⁻³ кг/моль
Атомная единица массы	1 а.е.м.	1,66·10 ⁻²⁷ кг
Масса покоя электрона	m _e	9,11·10 ⁻³¹ кг
		0,00055 а.е.м.
Масса покоя нейтрона	m_n	1,67·10 ⁻²⁷ кг
Масса накод протона	100	1,00867 а.е.м. 1,67·10 ⁻²⁷ кг
Масса покоя протона	m_p	1,00728 a.e.м.
Элементарный заряд	e, q_e	1,6·10 ⁻¹⁹ Кл
Удельный заряд электрона	e/m_e	1,76·10 ¹¹ Кл/кг
Электрическая постоянная	ε ₀	$8.85 \cdot 10^{-12} \Phi/M$
Магнитная постоянная	μ_0	$4\pi \cdot 10^{-7} \Gamma$ H/M
Постоянная Планка	h	6,63·10 ⁻³⁴ Дж·с
Постоянная Стефана-Больцмана	σ	$5,67 \cdot 10^{-8} \text{BT/(M}^2 \cdot \text{K}^4)$
Постоянная смещения Вина	b	2,90·10 ⁻³ м·К
Постоянная Ридберга	R	$1,097 \cdot 10^7 \mathrm{m}^{-1}$
Боровский радиус	a_0	$0.529 \cdot 10^{-10} \mathrm{M}$
Комптоновская длина волны		10 1
для электрона	$\lambda_{ m C}$	$2,43\cdot10^{-12}\mathrm{m}^{-1}$
Магнетон Бора	$\mu_{\scriptscriptstyle m B}$	$9,27 \cdot 10^{-24} \mathrm{A \cdot m}^2$
Электрон-вольт	1 эВ	1,60·10 ⁻¹⁹ Дж
Энергия ионизации атома водорода	E_i	13,6 эВ
Энергетический эквивалент 1 а.е.м.		931,5 МэВ
Масса Земли	M_3	5,98·10 ²⁴ кг
Радиус Земли	R_3	6,37·10 ⁶ м
Расстояние от Земли до Солнца	R	149,46·10 ⁹ м

2.2. Греческий и латинский алфавиты

Для обозначения физических величин в физике используют греческие и латинские буквы, поэтому знание греческого и латинского алфавита облегчит понимание физического текста.

2.2.1. Алфавит греческий

Греческая буква	Название по-английски	Название по-русски
Αα	alpha	альфа
Вβ	beta	бета
Γγ	gamma	гамма
Δδ	delta	дельта
Εε	epsilon	эпсилон
Ζζ	zeta	дзета
Ηη	eta	эта
Θθ	theta	тета
Ιι	iota	йота
Кκ	kappa	каппа
Λλ	lambda	ламбда
Мμ	mu	МЮ
Nν	nu	НЮ
E	xi	кси
Оо	omicron	омикрон
Ππ	pi	пи
Рρ	rho	po
Σσ	sigma	сигма
Ττ	tau	тау
Υυ	upsilon	ипсилон
Φφφ	phi	фи
Χχ	chi	хи
Ψψ	psi	пси
Ωω	omega	омега

2.2.2. Алфавит латинский

Современный латинский алфавит, являющийся основой письменности германских, романских и многих других языков, состоит из 26 букв. Буквы в разных языках называются по-разному. В таблице приведены «русские математические» названия.

Латинск	кая буква	Название буквы	Латинск	ая буква	Название буквы
	Курсив			Курсив	
A, a	А, а	a	N, n	N, n	ЭН
B, b	В, b	бэ	О, о	О, о	0
C, c	С, с	це	P, p	Р, р	еп
D, d	D, d	дэ	Q, q	Q, q	ку, кю
E, e	Е, е	e	R, r	<i>R</i> , <i>r</i>	эр
F, f	F, f	эф	S, s	S, s	эс
G, g	G, g	же, гэ	T, t	<i>T</i> , <i>t</i>	ТЭ
H, h	Н, h	аш, ха	U, u	U, u	y
I, i	I, i	И	V, v	<i>V</i> , <i>v</i> , <i>v</i>	ВЭ
J, j	J, j	йот, жи	W, w	<i>W</i> , <i>w</i> , <i>w</i>	дубль-вэ
K, k	<i>K</i> , <i>k</i>	ка	X, x	<i>X</i> , <i>x</i>	икс
L, 1	L, l	ЭЛЬ	Y, y	<i>Y</i> , <i>y</i>	игрек
M, m	<i>M</i> , <i>m</i>	ЭМ	Z, z	Z, z	зет, зета

2.3. Множители и приставки для образования десятичных, кратных и дольных единиц и их наименований

	Приставка					
Множитель	наименование	Обознач.	Обознач.	Пример		
		русское	междунар.			
10^{12}	тера	T	T	тераджоуль	ТДж	TJ
10 ⁹	гига	Γ	G	гиганьютон	ГН	GN
10^{6}	мега	M	M	мегаом	МОм	ΜΩ
10^3	кило	К	k	километр	КМ	km
10 ²	гекто	Γ	h	гектоватт	гВт	hW
10^{1}	дека	да	da	декалитр	дал	dal
10^{-1}	деци	Д	d	дециметр	ДМ	dm
10^{-2}	санти	c	c	сантиметр	СМ	cm
10^{-3}	милли	M	m	милливольт	мV	mV
10^{-6}	микро	MK	μ	микроампер	мкА	μΑ
10 ⁻⁹	нано	Н	n	наносекунда	нс	nc
10^{-12}	пико	П	p	пикофарад	пФ	pF
10^{-15}	фемто	ф	f	фемтометр	фм	fm

2.4. Некоторые сведения о единицах физических величин

2.4.1. Единицы физических величин СИ, имеющие собственные наименования

T.		Единица	
Величина	наименование	обозначение	обозначение
	панменование	(русское)	(международное)
Длина	метр	M	т
Macca	килограмм	КГ	kg
Время	секунда	c	S
Плоский угол	радиан	рад	rad
Телесный угол	стерадиан	ср	sr
Сила, вес	Ньютон	H	N
Работа, энергия	джоуль	Дж	J
Мощность	ватт	Вт	W
Давление	паскаль	Па	Pa
Напряжение (механическое)	паскаль	Па	Pa
Модуль упругости	паскаль	Па	Pa
Частота колебаний		Гц	Hz
Термодинамическая	герц	К	K
температура	кельвин	K	K
Тепло	джоуль	Дж	J
(количество тепла)	Ancojois		v
Количество вещества	МОЛЬ	МОЛЬ	mol
Электрический заряд	кулон	Кл	С
Сила тока	ампер	A	A
Потенциал	вольт	В	V
электрического поля			
Напряжение (электрическое)	вольт	В	V
Электрическая	фарад	Ф	F
ёмкость			
Электрическое	OM	Ом	Ω
сопротивление			
Электрическая	сименс	См	S
проводимость		т_	Т
Магнитная индукция	тесла	Тл	T
Магнитный поток	вебер	Вб	Wb
Индуктивность	генри	Гн	H
Сила света	кандела	кд	cd
Световой поток	люмен	ЛМ	lm
Освещённость	люкс	ЛК	1x
Поток излучения	ватт	Вт	W
Доза излучения (поглощённая доза)	грей	Гр	Gy
Активность препарата	беккерель	Бк	Bq

2.4.2. Внесистемные единицы, допущенные к применению наравне с единицами СИ (в соответствии со стандартом 1052-78 «Метрология. Единицы физических величин»)

Величина	Наименование	Обозначение	Соотношение с единицей СИ
Macca	тонна	T	1000 кг
	грамм	Γ	0,001 кг
Объём, вместимость	литр	Л	1 л=0,001 м ³
Относительная	единица (число 1)	_	1
величина	процент	%	10^{-2}
Логарифмическая	бел	Б	_
величина	децибел	дБ	_
Температура	градус Цельсия	°C	1°C = 1K

2.4.3. Соотношения между внесистемными единицами и единицами СИ

Длина	1 ангстрем = 10^{-10} м
Время	1 сутки = 86400 с
	1 год = $365,25$ суток = $3,16\cdot10^7$ с
Плоский угол	$1^{\circ} = \pi/180 \text{ рад} = 1,75 \cdot 10^{-2} \text{ рад}$
	$1' = (\pi/108) \cdot 10^{-2}$ рад = 2,91 · 10 ⁻⁴ рад
	$1'' = (\pi/648) \cdot 10^{-3}$ рад = $4,85 \cdot 10^{-6}$ рад
	1 рад = 57,29577951°=57°17′44′′8
Объём, вместимость	$1 \pi = 1 \text{ дм}^3 = 10^{-3} \text{ м}^3$
Macca	$1 \text{ T} = 10^3 \text{ K}\text{G}$
	$1 \Gamma = 10^{-3} \text{ к}$ Г
	1 а.е.м. = $1,66 \cdot 10^{-27}$ кг
Сила	1 кгс = 9,81 Н
Работа, энергия	$1 ext{ PB} = 1,6 \cdot 10^{-19}$ Дж
	$1 \text{ кВт-ч} = 3,6.10^6 \text{ Дж}$
Мощность	1 л.с. =736 Вт
Давление	1 кгс/см ² =1 атм (техн) = $9.81 \cdot 10^4$ Па
	1 бар=10 ⁵ Па
	1 мм рт. ст. = 133,3 Па
Тепло (количество тепла)	1 кал = 4,19 Дж
Магнитная индукция	$1 \Gamma c (raycc) = 10^{-4} T \pi$
Напряженность магнитного поля	1 Э (эрстед) = 79,6 A/м ≈ 80 A/м

3. Таблицы физических величин

3.1. Астрономические величины

Радиус Солнца	6,94·10 ⁸ м
Масса Солнца	1,99·10 ³⁰ кг
Радиус Земли	6,37·10 ⁶ м
Масса Земли	5,98·10 ²⁴ кг
Радиус Луны	$1,74\cdot10^6$ м
Масса Луны	7,35·10 ²² кг
Среднее расстояние от Земли до Солнца	1,496·10 ¹¹ м
Среднее расстояние от Земли до Луны	3,844·10 ⁸ м
Время полного оборота Земли вокруг	23 час 56 мин 4,09 сек
своей оси	
Период обращения Луны вокруг Земли	27 сут 7 час 43 мин

3.2. Плотность и модуль упругости твёрдых тел

Материал		Плотность	Модуль упругости
iviarephasi		ρ,	(модуль Юнга)
		ρ, 10 ³ κγ/m ³	E, ГПа
Алюминий	Al	2,70	69 - 72
Вольфрам	W	19,3	350 - 400
Германий	Ge	5,32	82
Железо	Fe	7,86	195 - 205
Золото	Au	19,3	78 - 83
Индий	In	7,31	10,5
Кремний	Si	2,33	110 – 160
Медь	Cu	8,96	110 – 130
Молибден	Mo	10,2	300 - 330
Никель	Ni	8,9	200 - 220
Олово	Sn	7,3	41 – 55
Палладий	Pd	12,0	115 – 125
Платина	Pt	21,4	150 - 175
Селен	Se	4,79	55
Серебро	Ag	10,5	72 – 72,5
Свинец	Pb	11,4	14 - 18
Титан	Ti	4,51	110
Цинк	Zn	7,14	100 – 130
Дюралюминий		2,79	70 – 72,5
Сталь (катаная)		7,85-8,0	200 - 210
Медные сплавы (латуни)		8,4-8,7	102 – 115

3.3. Тепловые свойства твёрдых тел

Вещество	$t_{\scriptscriptstyle \Pi \Pi},$	С,	λ,	η,	α,
	$^{\circ}\mathrm{C}$	кДж/(кг-К)	10 ⁵ Дж/кг	$B_T/(M \cdot K)$	0^{-5} K^{-1}
Алюминий	660	0,86	4,0	237	2,3-2,4
Дюралюминий	600	0,60		130	1,8-2,6
Сталь	1440	0,45	2,7	50	1,0-1,8
Золото	1063		0,64	317	7,8-8,3
Медь	1083	0,38	2,1	400	1,6-1,7
Медные сплавы	900	0,35		110	1,8-2,0
(латуни)					
Свинец	327	0,13	0,23	35	2,8-2,9
Олово	232	0,23	0,605	70	2,0-2,2
Лёд	0	2,1	3,4	2,2	5,27
Стекло	600	0,67	1,4	0,92	0,6-1,0
(оконное)					

 $t_{\text{пл}}$ — температура плавления; c — удельная теплоёмкость; λ — удельная теплота плавления; η — коэффициент теплопроводности;

α – температурный коэффициент линейного расширения (средние значения).

3.4. Свойства жидкостей при 20°C

		F.	Поверхностное	Температура
Вещество	Плотность	Вязкость	натяжение	кипения
	ρ,	η,	α,	t,
	кг/м³	мПа∙с	мН/м	°C
Вода	1000	1,00	72,8	100
Глицерин	1260	1480	59,4	290
Масло касторовое	955	986	32,8	
Керосин	840	1,5	24,0	150 - 250
Ртуть	13595	1,55	475,0	356,6

3.5. Свойства газов при 20°С

_		Плотность	Диаметр	Вязкость	Показатель
Вещество		ρ , k Γ/M^3	молекулы	η, мкПа∙с	адиабаты
			d, HM		$\gamma = c_{\rm p}/c_{\rm v}$
Азот	N_2	1,250	0,371	16,6	1,401
Водород	H_2	0,089	0,28	8,4	1,407
Воздух		1,293	0,357	17,1	1,400
Гелий	Не	0,178	0,1987	18,6	1,63
Кислород	O_2	1,429	0,35	19,2	1,400
Метан	CH ₄	0,717			
Углекислый газ	CO_2	1,977	0,45	13,8	1,33

3.6. Скорость звука при 20°С

Газы		Жидкости		Твёрдые тела	
Вещество	υ, м/с	Вещество	<i>v</i> , м/с	Вещество	υ, м/с
Азот	334	Анилин	1656	Алюминий	5080
Водород	1300	Бензол	1321	Железо	5170
Воздух	334	Вода	1482	Сталь	5100
Гелий	965	Глицерин	1895	Чугун	3850
Кислород	315	Дихлорэтан	1034	Латунь	3490
Метан	430	Керосин	1295	Гранит	3950
Углекислый газ CO ₂	260			Лёд (-4°С)	3280

3.7. Состав сухого атмосферного воздуха

Газ	Хим. формула	Объёмные %	Весовые %
Азот	N_2	78,09	75,50
Кислород	O_2	20,95	23,10
Аргон	Ar	0,932	1,286
Углекислый газ	CO_2	0,030	0,046
Неон	Ne	$1,8\cdot 10^{-3}$	$1,3\cdot 10^{-3}$
Гелий	Не	$4,6\cdot10^{-4}$	$7,2\cdot 10^{-5}$

Примечания:

- 1. Состав воздуха постоянен до высоты 60 км.
- 2. Молярная масса воздуха M=0,029 кг/моль.
- 3. Содержание водяных паров в воздухе колеблется от 0,1 до 2,8 объёмных %.

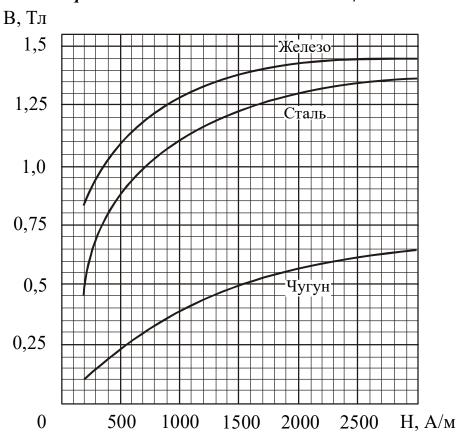
3.8. Критические параметры и поправки Ван-дер-Ваальса

Газ	Критическая температура	Критическое давление	Поправка Ва	н-дер-Ваальса
1 83	T_{kp} , K	$p_{\text{кр}}$, МПа	$a, \text{H} \cdot \text{м}^4 / \text{моль}^2$	$b, 10^{-5} \text{м}^3/\text{моль}$
Азот	126	3,39	0,135	3,86
Аргон	151	4,86	0,134	3,22
Водород	33	1,30	0,025	2,66
Водяной пар	647	22,1	0,545	3,04
Гелий	5,2	0,23	0,003	2,36
Кислород	1,55	5,08	0,136	3,17
Углекислый газ	304	7,38	0,361	4,28
Хлор	417	7,71	0,650	5,62
Эфир	467	3,59	1,746	13,33

3.9. Элементы периодической системы Z — порядковый номер; A — относительная атомная масса химического элемента (округленные значения)

Z	Элемент	Символ	A	Z	Элемент	Символ	\overline{A}
1	Водород	Н	1	47	Серебро	Ag	108
2	Гелий	Не	4	48	Кадмий	Ag Cd	112
3	Литий	Li	7	49	Индий	In	115
4	Бериллий	Be	9	50	Олово	Sn	119
5	Бор	В	11	51	Сурьма	Sb	122
6	Углерод	$\frac{D}{C}$	12	52	Теллур	Te	128
7	Азот	N	14	53	Йод	I	127
8	Кислород	0	16	54	Ксенон	Xe	131
9	Фтор	F	19	55	Цезий	Cs	133
10	Неон	Ne	20	56	Барий	Ba	137
11	Натрий	Na	23	57	Лантан	La	139
12	Магний	Mg	24	58	Церий	Ce	140
13	Алюминий	Al	27	59	Празеодим	Pr	141
14	Кремний	Si	28	60	Неодим	Nd	144
15	Фосфор	P	31	61	Прометий	Pm	145
16	Сера	S	32	62	Самарий	Sm	150
17	Хлор	Cl	35	63	Европий	Eu	152
18		Ar	40	64	Гадолиний	Gd	157
19	Аргон Калий	K	39	65	Тербий	Tb	159
20	Калии	Ca	40	66	Диспрозий	Dy	163
21	Скандий	Sc	45	67	Гольмий	Но	165
22	Титан	Ti	47	68	Эрбий	Er	167
23	Ванадий	V	51	69	Тулий	Tu	169
24	Хром	Cr	52	70	Иттербий — — — — — — — — — — — — — — — — — — —	Yb	173
25		Mn	55	70	Лютеций	Lu	175
26	Марганец Железо	Fe	56	72	Гафний	Hf	178
27	Кобальт	Co	59	73	Тантал	Ta	181
28		Ni	59	74		W	
	Никель				Вольфрам		184
29 30	Медь	Cu	64	75 76	Рений	Re	186
	Цинк	Zn	65	76	Осмий	Os	190
31	Галлий	Ga	70	77	Иридий	Ir D4	192
32	Германий	Ge	73	78	Платина	Pt	195
33	Мышьяк	As	75	79	Золото	Au	197
34	Селен	Se	79	80	Ртуть	Hg	201
35	Бром	Br	80	81	Таллий	T1	204
36	Криптон	Kr	84	82	Свинец	P. P.	207
37	Рубидий	Rb	86	83	Висмут	Bi	209
38	Стронций	Sr	88	84	Полоний	Po	210
39	Иттрий	Y	89	85	Астат	At	210
40	Цирконий	Zr	91	86	Радон	Rn	222
41	Ниобий	Nb	93	87	Франций	Fr	223
42	Молибден	Mo	96	88	Радий	Ra	226
43	Технеций	Tc	99	89	Актиний	Ac	227
44	Рутений	Ru	101	90	Торий	Th	232
45	Родий	Rh	103	91	Протактиний	Pa	231
46	Палладий	Pd	106	92	Уран	U	238

3.10. Электрические свойства веществ


Вещество	Диэлектрическая проницаемость,	Пробивная напряжённость
	3	E , 10^6 В/м
Воздух	1,0	3,1
Масло трансформаторное	2,2	12 - 20
Масло конденсаторное	4,0	20 - 25
Слюда	7,0	100 - 250
Стекло электроизоляционное	5,0	40 - 44
Текстолит	8,0	27 - 30
Парафинированная бумага	2,1	40 - 60
Полиэтилен	2,2	25 - 60
Керосин	2,1	_
Фарфор	5,0	30 - 32
Эбонит	3,0	20 – 35

3.11. Удельное электрическое сопротивление ρ_0 и температурный коэффициент сопротивления α некоторых проводников при 0° С

Проводник		ρ ₀ , 10 ⁻⁸ Ом·м	α , 10^{-3}град^{-1}
Алюминий	Al	2,5	4,60
Ванадий	V	18,2	3,90
Вольфрам	W	4,89	5,10
Железо	Fe	8,6	6,51
Золото	Au	2,06	4,02
Кобальт	Co	5,57	6,04
Магний	Mg	4,31	4,12
Медь	Cu	1,55	4,33
Молибден	Mo	5,05	4,73
Неодим	Nd	71,0	2,00
Никель	Ni	6,14	6,92
Олово	Sn	11,15	4,65
Палладий	Pd	9,77	3,77
Платина	Pt	9,81	3,96
Ртуть	Hg	94,07	0,99
Свинец	Pb	19,2	4,28
Серебро	Ag	1,49	4,30
Титан	Ti	42,0	5,46
Хром	Cr	14,1	3,01
Цинк	Zn	5,65	4,17

Проводник	ρ ₀ , 10 ⁻⁸ Ом·м	α , 10^{-3} град $^{-1}$
Сталь	12,0	6,10
Константан	50,0	0,05
Манганин	43,0	0,01
Нейзильбер	30,0	0,25
Никелин	40,0	0,11
Нихром	110,0	0,12
Фехраль	130,0	0,15
Латунь	7,1	1,70
Платиносеребряный	27,0	0,24

3.12. Связь между магнитной индукцией В поля в ферромагнетике и напряжённостью Н намагничивающего поля

3.13. Показатели преломления (средние значения)

Газы		Жидкости		Твёрдые тела	
Вещество	n	Вещество	n	Вещество	n
Азот	1,000297	Вода	1,33	Алмаз	2,42
Воздух	1,000292	Глицерин	1,47	Кварц плав	1,46
Метан	1,000441	Масло кедровое	1,52	Стекло	1,50
Хлор	1,000768	Масло коричное	1,60	NaCl	1,53

3.14. Интервалы длин волн и частот и соответствующие им цвета видимой части спектра*

Цвет спектра	Длина волны λ, нм	Частота v, 10 ¹⁴ Гц
Красный	760 – 620	3,95 – 4,83
Оранжевый	620 - 590	4,83 – 5,08
Жёлтый	590 – 560	5,08 - 5,36
Зелёный	560 - 500	5,36 - 6,00
Голубой	500 – 480	6,00 - 6,25
Синий	480 – 450	6,25 - 6,66
Фиолетовый	450 – 380	6,66 – 7,89

^{*}Область видимой части спектра заключена в границах волн приблизительно от 380 до 760 нм. Границы цветов спектра также определяются лишь условно.

3.15. Шкала электромагнитных волн

Название	Примерный диаг	тазон длин волн	Диапазон частот
диапазона волн			
	M	Другие единицы	Гц
Низкочастотные			
электрические			
колебания	$\infty \div 10^{+5}$	∞ ÷ 100 км	$0 \div 3 \cdot 10^3$
Радиоволны	$10^{+5} \div 10^{-3}$	100 км ÷ 1 мм	$3 \cdot 10^3 \div 3 \cdot 10^{11}$
Инфракрасное			
излучение	$2 \cdot 10^{-3} \div 7,6 \cdot 10^{-7}$	2 мм ÷ 760 нм	$1,5 \cdot 10^{11} \div 4,0 \cdot 10^{14}$
Видимое			
излучение	$7,6\cdot10^{-7} \div 3,8\cdot10^{-7}$	760 ÷ 380 нм	$4,0\cdot10^{14} \div 8,0\cdot10^{14}$
Ультрафиолетовое			
излучение	$3.8 \cdot 10^{-7} \div 3 \cdot 10^{-9}$	380 ÷ 3 нм	$8,0\cdot10^{14} \div 10^{17}$
Рентгеновское			
излучение	$10^{-8} \div 10^{-12}$	10 нм ÷ 1 пм	$3 \cdot 10^{16} \div 3 \cdot 10^{20}$
Гамма-излучение	10 ⁻¹¹ и менее	10 пм и менее	3·10 ¹⁹ и выше

Обратите внимание! Различные виды электромагнитного излучения отличаются лишь длиной волны (или, что то же самое, частотой). В зависимости от длины волны (частоты) меняются свойства волн, их действия, способы получения и названия отдельных участков.

3.16. Длины волн ярких линий в спектре ртутной лампы ПРК-4

Окраска линии	Длина волны λ, нм	Относительная яркость (визуальная оценка)	
Фиолетовая	404,66	2	
Фиолетовая	407,78	1	
Синяя	435,83	8	
Голубая	491,60	1	
Зелёная	546,07	10	
Жёлтая	576,96	8	
Жёлтая	579,07	10	

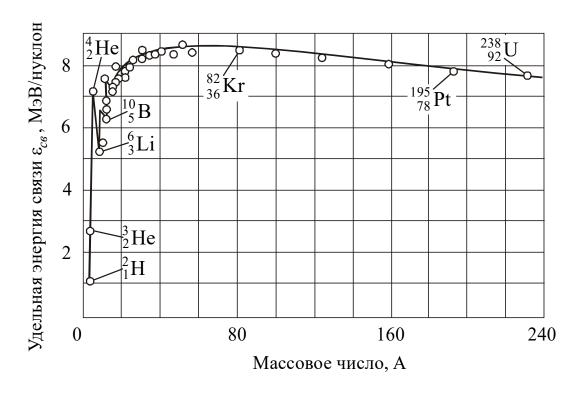
3.17. Длины волн некоторых ярких линий в спектре неона $^{1)}$

Окраска линии	Длина волны	Относительная яркость
1	λ , HM	(визуальная оценка)
Жёлтая	576,44	3
Жёлтая	585,25	10
Жёлтая	588,19	4
Оранжевая	594,48	3
Оранжевая	597,55	2
Красно-оранжевая	603,00	2
Красно-оранжевая	607,43	4
Красно-оранжевая	609,62	3
Красно-оранжевая	614,31	6
Ярко-красная	616,36	5
Ярко-красная	621,73	3
Ярко-красная	626,65	8
Ярко-красная	630,48	2
Ярко-красная	633,44	5
Ярко-красная	638,30	10
Ярко-красная	640,22	10
Красная	650,65	5
Красная	653,29	5
Красная	659,89	5
Красная	667,83	3
Красная	671,70	1

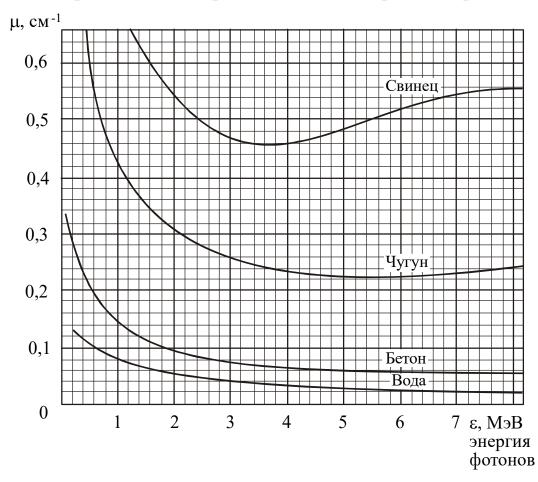
¹⁾ В таблице подробно даны линии красно-оранжевой области спектра, обычно используемые для градуировки спектральных приборов. В области длин волн, меньших 580 нм, градуировку удобнее проводить по спектру ртути.

3.18. Спектральные линии атома водорода в видимой части спектра (серия Бальмера)

Переход	Обозначение	Длина волны	Частота	Цвет
$n_i \rightarrow n_k$		λ, м	v, 10 ¹⁴ Гц	
3→2	H_{α}	656,280	4,571	Красная
4→2	H_{eta}	486,132	6,171	Зелёно-голубая
5→2	H_{γ}	434,046	6,911	Сине-фиолетовая
6→2	H_{δ}	410,173	7,313	Фиолетовая
7→2	H_{ϵ}	397,007	7,557	Ультрафиолетовая


3.19. Основные физические свойства некоторых полупроводниковых материалов

Вещество	Ширина запрещённой зоны ΔE , эВ	Подвижность электронов $\mu_{\mathfrak{B}},$ $cm^2/(B \cdot c)$	Подвижность дырок $\mu_{\rm J}, \ { m cm}^2/({ m B}\cdot{ m c})$	Плотность
Si	1,11	1600	500	2,33
Ge	0,66	3900	1900	5,32
AlAs	2,20	1200	_	3,60
AlP	2,45	50	150	2,85
AlSb	1,63	200	420	4,15
Mg ₂ Ge	0,57	500	100	3,09
GaAs	1,43	8500	420	5,37
GaSb	0,78	4000	650	5,61
GaTe	1,78	4000	650	5,61
InAs	0,36	33 000	460	5,68
InSb	0,18	78000	750	5,78
InP	1,26	4600	150	4,79
InS	1,92	50	-	5,18
PbSe	0,28	0,50	1000	8,15
PbTe	0,32	1730	840	8,16
SnTe	0,18	_	400	6,45
Cd_3P_2	0,55	3000	_	5,60
ZnTe	2,34	340	110	5,68
Al _x Ga _{1-x} As	1,41-2,20			
In _x Ga _{1-x} As	1,38–1,97			


3.20. Работа выхода для химически чистых элементов и элементов, покрытых слоем адсорбата

Элемент	Символ	А, эВ	Адсорбент – адсорбат	А, эВ
Алюминий	Al	4,25	C – Cs	1,37
Вольфрам	W	4,54	Ti – Cs	1,32
Германий	Ge	4,76	Cr – Cs	1,71
Индий	In	3,80	Fe – Cs	1,82
Иттрий	Y	3,30	Cu – Cs	1,64
Калий	K	2,22	Mo – Cs	1,54
Кобальт	Co	4,41	Ge – Ba	2,20
Кремний	Si	4,80	Mo – Th	2,58
Магний	Mg	3,64	Ag - Ba	1,56
Марганец	Mn	3,83	Ta – Cs	1,10
Медь	Cu	4,40	W – Li	2,18
Натрий	Na	2,35	W-La	2,20
Никель	Ni	4,50	Pt – Na	2,10
Палладий	Pd	4,80	Pt – Rb	1,57
Празеодим	Pr	2,70	Pt – Ba	1,90
Самарий	Sm	2,70	W - O - Na	1,72
Селен	Se	4,72	Сталь 1X18H9T – Cs	1,41
Серебро	Ag	4,30	Ta_2C-Cs	1,40
Стронций	Sr	2,35	$TaSi_2 - Cs$	1,47
Хром	Cr	4,58	$Mo_2C - Cs$	1,45
Цезий	Cs	1,81	$WSi_2 - Cs$	1,47
Цинк	Zn	4,24	Pd – Cs	1,51

3.21. Зависимость удельной энергия связи от массового числа

3.22. Зависимость линейного коэффициента ослабления от энергии падающих фотонов для некоторых материалов

3.23. Основные свойства некоторых изотопов

Таблица 3.23

Элемент	Символ	Атомная масса,	Относит. распростран.	Тип	Период
	изотопа	a.e.m.	%	распада	полураспада
Нейтрон	$_{0}n^{1}$	1,008665	_	β –	14,5 мин
Протон	₁ p ¹	1,007276	_	1	стабилен
Водород	1H ¹	1,007825	99,985		стабилен
Дейтерий	$_{1}\mathrm{H}^{2}$	2,014102	0,015		стабилен
Тритий	$_{1}\mathrm{H}^{3}$	3,016049	_	β –	12,33 года
Гелий	₂ He ³	3,016030	0,000138	!	стабилен
Гелий	₂ He ⁴	4,002604	99,99986		стабилен
Гелий	₂ He ⁶	6,018891	_	β –	0,808 с
Литий	₃ Li ⁶	6,015126	7,52	,	стабилен
Литий	₃ Li ⁷	7,016005	92,48		стабилен
Литий	₃ Li ⁸	8,022487	_	β –	0,842 c
Бериллий	$_4\mathrm{Be}^7$	7,016930	_	Э.3.	53 дня
Бериллий	₄Be ⁹	9,012186	100		стабилен
Бор	$_{5}B^{10}$	10,012939	19,9		стабилен
Бор	\mathbf{p}^{11}	11,009305	80,1		стабилен
Углерод	₆ C ¹²	12,00000	98,89		стабилен
Углерод	C^{13}	13,003354	1,11		стабилен
Углерод	$_{6}C^{14}$	14,003242	_	β –	5730 лет
Азот	$_{7}N^{13}$	13,005739	_	β +	9,96 мин
Азот	$_{7}N^{14}$	14,003074	99,63		стабилен
Азот	$_{7}N^{15}$	15,000108	0,37		стабилен
Азот	$_{7}N^{16}$	16,005739	_	β –	7,13 c
Кислород	${}_{8}O^{16}$	15,994915	99,762	-	стабилен
Кислород	₈ O ¹⁷	16,999133	0,038		стабилен
Кислород	8O ¹⁸	17,999160	0,200		стабилен
Фтор	₉ F ¹⁹	18,998405	100		стабилен
Неон	₁₀ Ne ²⁰	19,992440	90,51		стабилен
Неон	$_{10} \text{Ne}^{22}$	21,991384	9,22		стабилен
Натрий	$_{11}$ Na 22	21,994435	_	β+	2,6 года
Натрий	$_{11}Na^{23}$	22,989773	100		стабилен
Магний	$_{12}\mathrm{Mg}^{23}$	22,994135	_	β+	11,3 сек
Магний	12Mg^{24}	23,985044	78,99		стабилен
Магний	$1.2 \mathrm{Mg}^{20}$	25,982591	11,01		стабилен
Магний	$_{12}\mathrm{Mg}^{27}$	26,984345	_	β –	9,46 мин
Алюминий	$l_{13}Al^{2}$	26,981535	100	-	стабилен
Кремний	₁₄ Si ²⁸	27,976927	92,23		стабилен
Кремний	14Si ³⁰	29,973761	3,10		стабилен

Продолжение таблицы 3.23

		Атомная	Относит.		
Элемент	Символ	масса,	распростран.	Тип	Период
	изотопа	a.e.m.	%	распада	полураспада
Фосфор	₁₅ P ³¹	30,973763	100		стабилен
Фосфор	1.5 P ³²	31,973908	_	β –	14,36 сут
Cepa	$_{16}S^{32}$	31,972074	95,02	Υ	стабилен
Сера	$^{16}S^{35}$	34,969034	_	β –	87,24 сут
Хлор	17Cl ³⁵	34,968854	75,77	Р	стабилен
Хлор	$_{17}\text{Cl}^{37}$	36,965896	24,23		стабилен
Аргон	$1 \circ Ar^{36}$	35,967548	0,34		стабилен
Аргон	$1.8Ar^{40}$	39,962384	99,60		стабилен
Калий	19K ³⁹	38,963714	93,26		стабилен
Калий	$_{19}$ K 40	39,963999	0,0117	β –	1,28·10 ⁶ лет
Калий	$_{19}K^{42}$	41,962417	_	β –	12,5 час
Кальций	20Ca ⁴⁰	39,962589	96,94	•	стабилен
Кальций	$_{20}\text{Ca}^{45}$	44,956189	_	β –	163,8 сут
Скандий	$_{21}\text{Sc}^{45}$	44,955919	100	,	стабилен
Титан	Ti 48	47,947948	73,8		стабилен
Ванадий	$^{23}V^{51}$	50,943978	99,75		стабилен
Хром	$_{24}\mathrm{Cr}^{_{31}}$	50,944786	_	э.з.	27,7 сут
Хром	₂₄ Cr ⁵²	51,940506	83,79		стабилен
Марганец	$_{25}Mn^{33}$	54,938054	100		стабилен
Железо	$_{26} \text{Fe}^{55}$	54,940438	_	э.з.	2,7 года
Железо	₂₆ Fe ⁵⁶	55,934935	91,72		стабилен
Железо	$_{26} \text{Fe}^{57}$	56,935391	2,2		стабилен
Кобальт	27Co ⁵⁸	57,935754	_	Э.3.	70,78 суток
Кобальт	27Co ⁵⁹	58,933189	100		стабилен
Кобальт	$^{27}\text{Co}^{60}$	59,933816	_	β –	5,27 года
Никель	$1 \sim Ni^{38}$	57,935343	68,27		стабилен
Никель	$_{28}Ni^{03}$	62,929665	_	β+	100,1 года
Медь	29Cu ⁶³	62,929594	69,17		стабилен
Медь	20C11 ⁶⁵	64,927786	30,83		стабилен
Цинк	$207n^{64}$	63,929141	48,6		стабилен
Галлий	$_{31}$ Ga 09	68,925576	60,1		стабилен
Галлий	$I_{31}Ga^{\prime 1}$	70,924695	39,9		стабилен
Германий	$_{32}\text{Ge}^{70}$	69,924245	20,5		стабилен
Германий	$_{22}$ Ge 72	71,922075	27,4		стабилен
Мышьяк	$_{33}As^{/3}$	74,921590	100		стабилен
Селен	34Se'	77,917298	23,6		стабилен
Селен	$_{34}^{34}\text{Se}^{80}$	79,916515	49,7		стабилен
Бром	$_{35}\text{Br}^{79}$	78,918330	50,69		стабилен

Продолжение таблицы 3.23

		Атомная	Относит.		
Элемент	Символ	масса,	распростран.	Тип	Период
	изотопа	а.е.м.	%	распада	полураспада
Криптон	₃₆ Kr ⁸⁴	83,911446	57,0		стабилен
Криптон	$_{36}$ Kr 85	84,912531	_	β –	10,72 года
Рубидий	$_{37}\text{Rb}^{85}$	84,911788	72,16	I -	стабилен
Рубидий	37Rb ⁸⁶	85,909183	_	β –	18,66 сут
Стронций	20Sr ⁸⁸	87,905622	82,58	<u> </u>	стабилен
Стронций	$_{38}Sr^{90}$	88,907734	_	β –	28,6 лет
Стронций	$_{38}Sr^{94}$	93,915234	_	β –	78 c
Иттрий	$_{39}Y^{88}$	87,909503	_	э.з.	106,6 сут
Иттрий	39Y ⁸⁹	88,905849	100		стабилен
Цирконий	$_{40}Zr^{90}$	89,904701	51,45		стабилен
Цирконий	$_{40}Zr^{95}$	94,908028	_	β –	64,0 сут
Ниобий	41Nb ⁹³	92,906372	100	,	стабилен
Молибден	$_{42}\text{Mo}^{92}$	91,906802	14,84		стабилен
Технеций	$1 _{42}\text{Tc}^{98}$	97,907203	_	β –	4,2·10 ⁶ лет
Рутений	$\int_{AA} Ru^{102}$	101,904338	31,6	,	стабилен
Родий	$_{45}\mathrm{Rh}^{101}$	100,906162	_	Э.3.	3,3 года
Родий	$_{45}\text{Rh}^{103}$	102,905502	100		стабилен
Палладий	$_{46}Pd^{108}$	107,903891	26,46		стабилен
Серебро	$A_7 A \sigma^{107}$	106,905088	51,84		стабилен
Серебро	$_{47}Ag^{108}$	107,905956	_	β –	2,37 мин
Кадмий	$_{49}\text{Cd}^{113}$	112,904901	12,22		стабилен
Кадмий	4°Cd ¹¹⁴	113,903354	28,73		стабилен
Индий	I 40In ¹¹⁵	114,904070	95,72		стабилен
Олово	5.2 Sn 118	117,901790	24,22		стабилен
Олово	50Sn^{123}	122,905715	_	β –	129,2 сут
Сурьма	$\int_{51} Sh^{121}$	120,903750	57,25		стабилен
Сурьма	-51 Sh 123	122,904216	42,75		стабилен
Теллур	$_{52}\text{Te}^{130}$	129,906700	33,8		стабилен
Йод	52I ¹² /	126,904471	100		стабилен
Йод	$_{53}I^{131}$	130,906112	_	β –	8,04 сут
Ксенон	₅₄ Xe ¹³²	131,904142	26,9		стабилен
Ксенон	₅₄ Xe ¹³⁵	134,907040	_	β –	9,13 час
Ксенон	$_{54}$ Xe ¹⁴⁰	139,921439	_	β –	13,60 с
Цезий	$_{55}$ Cs ¹³³	132,905427	100		стабилен
Цезий	$_{55}\text{Cs}^{134}$	133,906694	_	β –	2,06 года
Барий	₅₆ Ba ¹³⁸	137,905226	71,7		стабилен
Лантан	₅₇ La ¹³⁹	138,906348	99,91		стабилен
Церий	$_{58}\text{Ce}^{140}$	139,905436	88,48		стабилен

Продолжение таблицы 3.23

		A	0		
Элемент	Символ	Атомная	Относит.	Тип	Период
	изотопа	масса, а.е.м.	распростран. %	распада	полураспада
Празеодим	₅₉ Pr ¹⁴¹	140,907651	100	1 ,,	стабилен
Неодим	60Nd ¹⁴⁶	145,913121	17,2		стабилен
Иридий	$\frac{60^{1} \text{ td}}{77} \text{Ir}^{192}$	191,962990		β –	73,8 суток
Золото	₇₉ Au ¹⁹⁷	196,966557	100	Р	стабилен
Ртуть	$_{80}$ Hg 194	196,966557	_	Э.3.	260 лет
Ртуть	$_{\circ o}$ H σ^{200}	199,968316	23,13		стабилен
Таллий	81Tl ²⁰⁴	203,973884		β –	3,78 года
Таллий	81Tl ²¹⁰	209,990069	_	β –	1,30 мин
Свинец	₈₂ Pb ²⁰⁷	206,975932	22,1	Ρ	стабилен
Свинец	82Pb ²⁰⁸	207,976641	52,4		стабилен
Свинец	$^{82}Pb^{210}$	209,984178	_	β –	22,3 года
Висмут	₀₂ Bi ²⁰⁹	208,980423	100	Ρ	стабилен
Висмут	83Bi ²¹⁰	209,984114	_	β –	5,0 сут
Висмут	83Bi ²¹¹	210,987263	_	α	2,14 мин
Полоний	$_{84}Po^{210}$	209,982871	_	α	138,4 сут
Астат	$_{85}At^{210}$	209,987490	_	э.з.	8,1 час
Радон	$_{86}$ Rn 222	222,017533	_	α	3,8 сут
Радий	$_{88}$ Ra 220	220,010972	_	α	0,025 c
Радий	$_{88}$ Ra 225	225,023604	_	β –	0,842 c
Радий	$_{88}$ Ra 226	226,025361	_	α	1620 лет
Радий	$_{88}$ Ra 227	227,029220	_	β –	42,2 мин
Актиний	$_{89}Ac^{225}$	225,023216	_	э.з.	10,0 сут
Актиний	$_{89}{ m Ac}^{228}$	228,031169	_	β –	6,13 час
Торий	$_{90}\mathrm{Th}^{229}$	229,031629	_	α	7340 лет
Торий	$_{90}\mathrm{Th}^{230}$	230,03080	_	α	$7,54 \cdot 10^4$ лет
Торий	$_{90}\text{Th}^{231}$	231,036301	_	β –	25,52 час
Торий	$_{90}\text{Th}^{232}$	232,038211	100	α	1,4·10 ¹⁰ лет
Протактиний	$_{01}Pa^{233}$	233,040246	_	β –	27,0 сут
Уран	$_{02}U^{233}$	233,039632	_	α	1,59·10 ⁵ лет
Уран	92U ²³⁴	234,040950	0,006	α	$2,45\cdot10^5$ лет
Уран	$_{02}U^{235}$	235,043931	0,72	α	$7,04 \cdot 10^8$ лет
Уран	$_{92}U^{238}$	238,050762	99,27	α	4,46·10 ⁹ лет
Уран	92U ²³⁹	239,054321	_	β –	23,5 мин
Нептуний	93Np ²³⁷	237,048172	_	α	$2,14\cdot10^6$ лет
Нептуний	$_{93}Np^{239}$	239,052935	_	β –	2,36 сут
Плутоний	$_{\text{od}}\text{Pu}^{238}$	238,049522	_	α	87,74 года
Плутоний	₉₄ Pu ²⁴⁰	240,053812	_	α	$6,54 \cdot 10^3$ лет
· ·					

УЧЕБНОЕ ИЗДАНИЕ

Справочные материалы по физике

Составители: Волков Александр Фёдорович, профессор, к.т.н. Лумпиева Таисия Петровна, доцент